DCEL101

		 _		,
Reg. No.	2			

I Semester B.Sc. Degree Examination, April - 2023 ELECTRONICS

Electronics Devices and Circuits

Paper: ELE - CT - 1

(NEP Scheme 2020)

Time: 21/2 Hours

Maximum Marks: 60

Instructions to Candidates:

Answer all the questions from Part -A, any Four questions from Part -B and any FOUR questions from Part -C.

Note: (Answer all questions of Part – A in any one page, the same questions answered multiple times will not be considered for Evaluation.)

					0.0	PART	`-A		,
Answer all the subdivisions.									$(12 \times 1 = 12)$
1.	i)	Inte	rnal resist	ance of an	Ideal V	oltage	sour	ce	•
		a)	one	· ·			b) 1	infinity	
		c)	zero				d)	none of the above	
	ii)	The	algebraic	sum of vo	ltage in	any cl	osed	path of network is equal to	
		a)	zero	· · ·			b)	infinity	
		c)	one		: e		d)	two	7
	iii)	The	oretical v	alue of effi	ciency	for a h	alf-w	rave rectifier is	
		a)	33.3%		•		b)	40.6%	•
	٠.	c)	66.6%	r		·•	d)	72.9%	
	iv)	The	output vo	ltage of IC	7915 v	oltage	regu	lator is	
		a)	+15V				b)	–5V	
		. (2)	+5V				d)	-15V	

- v) Which of the following points locate the quiescent point in CE mode
 - a) (I_C, V_{CE})

b) (I_{E}, V_{CB})

c) (I_{B}, V_{CE})

- d) (I_c, V_{cc})
- vi) β gain of the transistor indicates
 - a) Regulation capability
- b) Amplification capability
- c) Rectification capability
- d) All of the above
- vii) Which of the following is the universal biasing circuit
 - a) Collector to base bias
- b) Voltage divider bias

c) Emitter bias

- d) Fixed bias
- viii) Which amplifier is used for unity voltage gain
 - a) CC Amplifier

b) CB Amplifier

c) CE Amplifier

- d) None of the above
- ix) What is the input voltage of an amplifier with gain of 100 to generate 10V output?
 - . a) 1V

b) 100mV

c) 10mV

- d) lmV
- x) Identify the component shown in the figure

a) Zener diode

b) Junction diode

c) Schottky diode

- d) Light emitting diode
- xi) The BCD Code for decimal number 22
 - a) 0000 0010

b) 0010 0010

c) 0001 0110

- d) 0010 0000
- xii) _____ is a Universal logic gate
 - a) NAND

b) XOR

c) OR

d) AND

DCEL101

PART-B

Answer any Four of the following questions.

 $(4 \times 7 = 28)$

2. State Maximum power transfer theorem and explain with an example.

(7)

- 3. Draw the block diagram of regulated power supply and explain its functional blocks. (7)
- 4. a) Explain the operation of a NPN transistor.
 - b) Establish the relation between α and β .

(5+2)

- 5. With circuit diagram explain the working principle of single stage CE amplifier and draw the frequency response curve. (7)
- 6. With an example explain the method to convert decimal number to binary and Hexadecimal equivalent. (7)
- 7. a) State and verify De Morgan's theorem.
 - b) Verify the universal property of NAND gate by realizing OR gate.

(5+2)

PART-C

Answer any Four of the following questions.

 $(4 \times 5 = 20)$

8. Find the value of current through 10Ω resistor in the given circuit using Thevenin's theorem.

9. Calculate the efficiency and V_{DC} of a HWR with an input voltage of 250V rms and load resistance of 20 Ω , with turns ratio 10:1.

- 10. Draw the DC load line and mark the operating point for the voltage divider biasing circuit using silicon transistor. Given β =200, R_1 =1 1K Ω , R_2 = 3.2K Ω , R_C = 1.3K Ω , R_E = 750 Ω and V_{CC} = 9V.
- 11. Calculate $R_{L(min)}$ and $R_{L(max)}$ in the circuit shown for getting regulated output voltage. Given: $V_z = 5.6V$, $V_I = 30 \text{ V}$ and $I_{Z(max)} = 25 \text{ mA}$.

- 12. a) Subtract 30H from 7DH using 2's complement method.
 - b) Add (110110)₂ and (110110)₂ express the result in decimal. (3+2)
- 13. Simplify the expression $Y = A \cdot \overline{B} \cdot C + \overline{A} \cdot B(B \cdot C + \overline{B})$ using Boolean laws and draw the circuit for simplified expression using basic gates.