

VI Semester B.A./B.Sc. Examination, May 2016 (Semester Scheme) (2013-14 and Onwards) (NS) (F + R) MATHEMATICS (Paper – VII)

Time: 3 Hours

Max. Marks: 100

Instruction: Answerall questions.

I. Answer any fifteen questions:

(15×2=30)

- 1) Find the locus of the point z, satisfying $|z-4| \ge 3$.
- 2) Evaluate $\lim_{z\to i} \left(\frac{z^2+1}{z^6+1}\right)$. The results given the latter of the second second of the second of the second secon
- 3) Show that $f(z) = \sin z$ is analytic.
- 4) Prove that $u = y^3 3x^2y$ is a harmonic function.
- 5) Find the invariant (fixed) points of the bilinear transformation $W = \frac{3z-5}{z+1}$.
- 6) Evaluate $\int_{0}^{1+i} (x^2 iy)dz$ along the line y = x.
- 7) State Liouville's theorem.
- 8) Evaluate $\int_{C} \frac{1}{z(z-2)} dz$, where C is the circle |z| = 3.
- 9) Evaluate $\int_C \left[(2y + x^2) dx + (3x y) dy \right]$ along the curve x = 2t, $y = t^2 + 3$, where $0 \le t \le 1$.
- 10) Evaluate $\int_{0}^{1} \int_{0}^{1} (x^2 + y^2) dy dx$.

- 11) Evaluate $\int_{0}^{2\pi} \int_{1}^{2} \cos^{2}\theta \sin^{2}\theta dr d\theta$.
- 12) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)}$ dxdy by changing into polar co-ordinates.
- 13) Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{2} xyz^{2} dxdydz$.
- 14) State Green's theorem in the plane.
- 15) Prove that $\operatorname{div}\left(\operatorname{curl} \overrightarrow{F}\right) = 0$, using Stoke's theorem.
- 16) Evaluate $\iint_S \left[(x+z) \hat{i} + (y+z) \hat{j} + (x+y) \hat{k} \right] \hat{n} ds$, where S is the surface of the sphere $x^2 + y^2 + z^2 = 4$ by using Gauss divergence theorem.
- 17) Define an interior point.
- 18) State Bolzano-Weistrass theorem.
- 19) Define a topological space.
- 20) Let $X = \{a, b\}$ and $\tau = \{X, \phi, \{a\}, \{b\}\}$ be a topology on X. Find τ neighbourhood of 'a'.
- II. Answerany four questions:

 $(4 \times 5 = 20)$

- 1) Show that locus of a point z, satisfying amp $\left(\frac{z-1}{z+2}\right) = \frac{\pi}{3}$ is a circle. Find its centre and radius.
- 2) Prove the Cauchy-Riemann equations in the polar form $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$

$$\frac{\partial \mathbf{u}}{\partial \theta} = -\mathbf{r} \frac{\partial \mathbf{v}}{\partial \mathbf{r}}$$
.

- 3) Show that $f(z) = e^z$ is analytic and hence show that $f'(z) = e^z$.
- 4) Find the analytic function whose imaginary part is $e^{-y}(x \sin x + y \cos x)$.
- 5) Discuss the transformation $w = \sin z$.
- 6) Find the bilinear transformation which maps z = 0, -i, -1 onto w = i, 1, 0.
- III. Answerany two questions.

 $(2 \times 5 = 10)$

- 1) Evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where c : |z| = 3.
- 2) State and prove Cauchy's integral formula.
- 3) If a in any positive real number and c is the circle |z| = 3, show that

$$\int_{C} \frac{e^{2z}}{(z^2+1)^2} dz = \pi i (\sin a - a \cos a).$$

IV. Answerany four questions.

 $(4 \times 5 = 20)$

- 1) Evaluate $\int_{C} [3x^2dx + (2xz y)dy + zdz]$ along the line joining (0, 0, 0) and (2, 1, 3).
- 2) Evaluate \iint_R ydxdy where R is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.
- 3) Evaluate $\int_{0}^{1} \int_{\sqrt{y}}^{2-y} xydxdy$ by changing the order of integration.
- 4) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration.

of the second in the second

5) Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} \int_{0}^{\sqrt{a^2-x^2-y^2}} \frac{dxdydz}{\sqrt{a^2-x^2-y^2-z^2}}$$
.

6) Evaluate $\iint_{R} xyzdxdydz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$ by changing it to spherical polar co-ordinates.

V. Answerany two questions.

 $(2 \times 5 = 10)$

- 1) State and prove Green's theorem in the plane.
- 2) Evaluate $\iint_S \left(x \hat{i} + y \hat{j} + z^2 \hat{k} \right) . \hat{n} ds$, where S is the closed surface bounded by the cone $x^2 + y^2 = z^2$ and the plane z = 1, using divergence theorem.
- 3) Evaluate by Stoke's theorem $\oint_C (\sin z dx \cos x dy + \sin y dz)$. Where C is the boundary of the rectangle $0 \le x \le \pi$, $0 \le y \le 1$, z = 3.

VI. Answerany two questions.

 $(2 \times 5 = 10)$

- 1) Prove that the union of any number of open subsets of R² is open.
- 2) Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ then show that τ is a topology on X.
- 3) Let A and B be any two subsets of the topological space X, then prove that i) If $A \subset B \Rightarrow \overline{A} \subset \overline{B}$

ii)
$$(\overline{A \cup B}) = \overline{A} \cup \overline{B}$$
.

4) Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ be a topology for X. If $\beta = \{\{a\}, \{b\}, \{c\}\}$ then show that β is a base of τ .