

VI Semester B.Sc. Examination, May 2016 (Semester Scheme) (NS) (F + R) (2013-14 and Onwards) ELECTRONICS – VIII Instrumentation and Verilog

Time: 3 Hours

Max. Marks: 70

Instruction: Answer any five questions from Part – A, any four questions from Part – B and any five sub-questions from Part – C.

PART-A

,	Answer any five questions. Each question carries 8 marks: (5×8=40)
	Differentiate between static and dynamic characteristics of measu instruments. Define speed of response, fidelity, lag and dynamic error.	M in '
	b) Explain the principle of ultrasonic temperature transducer.	(6+2)
1	2. a) Explain the construction and working of a thermistor. Mention an applicatb) Explain the working principle of a photodiode and mention an application	
. (3. Write a note on origin of bioelectric signals.	8
4	4. With a block diagram, explain the function of an ECG system.	8
,	5. a) Distinguish between wand and tri nets with their syntax and truth tables.b) Distinguish between scalar and vector nets with examples.	(4+4)
6	6. Explain equality and logical operators in Verilog with examples for each.	8
7	 Describe dataflow style of Verilog. With the help of a circuit diagram, write a Verilog code for 4: 2 encoder in dataflow style. 	a 8
8	3. Explain initial and always statements in Verilog. Give an example for each.	8
	PART-B	

Answer any four questions. Each question carries 5 marks :

 $(4 \times 5 = 20)$

9. The expected and measured value of the current through a resistor is 45 mA and 44 mA respectively. Calculate (i) absolute error (ii) percentage error (iii) relative accuracy (iv) percentage accuracy.

- 10. What is a carrier amplifier? Explain its operation with a block diagram.
- 11. With a block diagram explain the function of EEG system.
- 12. With the help of a circuit diagram, write a Verilog code to implement 8:1 multiplexer.
- 13. Write a Verilog code to implement 4-bit binary to gray code converter and vice-versa.
- 14. Write a Verilog code to implement 3-bit ripple counter.

PART-C

15. Answer any five sub-questions. Each question carries 2 marks:

 $(5 \times 2 = 10)$

- a) Is photo transistor an active or a passive transducer? Justify.
- b) When a metallic wire of $100\,\Omega$ is stretched by 1 mm, its resistance increases by $0.1\,\Omega$. If its original length is 2 m, what is its gauge factor?
- c) Mention an advantage and an application of LVDT.
 - d) Match the following:
 - 1) Photoelectric effect
- i) Microphone
- 2) Photo emissive effect
- ii) Light energy into electrical

3) Potentiometer

- iii) Generation of emf under stress
- 4) Pressure transducer
- iv) Displacement
- v) Change in color
- e) Write the bit-pattern for the number 8'0x5 in Verilog.
- f) What is the bit pattern of the vector net bus after the following two instructions are executed?
 wire [7:0] bus; assign bus [3:0] = 4'h5;
- g) In a module if an undeclared net is to be wand net type, what should be the compiler directive?