

I Semester B.Sc. Examination, November/December 2017 (CBCS) (2014 – 15 and Onwards) (F+R) ELECTRONICS – I Basic Electronics

O17
GOLLEGE AND STREET

Time: 3 Hours

Max. Marks: 70

Note: 1) Answer all questions from Part – A, any five from Part – B and any four questions from Part – C.

2) Answer **all** questions from Part – **A** in **any one** page, the same question answered multiple times will **not** be considered for evaluation.

PART-A

Answer all the sub divisions.

 $(15 \times 1 = 15)$

- 1. i) We need a resistor of value 47 K Ω with \pm 5% tolerance. The sequence of the color band on this resistor should be
 - a) yellow, violet, yellow and gold
- b) yellow, violet, orange and gold
- c) yellow, violet, orange and silver
- d) yellow, violet, brown and gold
- ii) In a step up transformer, the number of turns in the secondary coil is
 - a) Less than primary coil turns
- b) More than primary coil turns
- c) Equal to primary coil turns
- d) None of the above
- iii) Thevenin's equivalent circuit consists of a
 - a) constant voltage source with a resistance in parallel
 - b) constant voltage source with a resistance in series
 - c) a current source with an voltage source
 - d) current source in series with a resistance
- iv) According to Kirchhoff's current law, the algebraic sum of the currents meeting at a point is always
 - a) zero

b) positive

c) negative

- d) equal to unity
- v) In order to obtain a maximum power from the terminals of a network, the load resistance should be
 - a) greater than the circuit resistance b) equal to the circuit resistance
 - c) less than the circuit resistance
- d) double the circuit resistance

P.T.O.

- vi) Current flows through a Germanium practical diode when the forward bias applied to it exceeds
 - a) 0.3 v

b) 1 v

c) 0.7 v

- d) 0 volt
- vii) Third approximation of a diode is represented by
 - a) only a do source
 - b) dc source with a series resistance
 - c) dc source with a series resistance and an ideal diode
 - d) a dc source parallel with a resistance
- viii) Theoretical value of ripple factor for a Center Tap Full Wave Rectifier is
 - a) 0.482

b) 0.812

c) 1.11

- d) 1.21
- ix) In voltage regulator circuits, Zener diode is operated in
 - a) forward bias mode
- b) forward breakdown region
- c) reverse breakdown region
- d) none of the above
- x) Transistor acts as a switch in
 - a) cut off and saturation regions
- b) cut off and active regions
- c) saturation and active regions
- d) in all the three regions

xi)

The circuit shown above is

a) Fixed bias

- b) Fixed bias with emitter feedback
- c) Collector to base bias
- d) Voltage divider bias
- xii) In an N Channel Field-Effect Transistor (FET), the gate is
 - a) a P type semiconductor
- b) a N type semiconductor

c) both a and b

- d) none of the above
- xiii) The code used in digital systems to represent decimal digits, alphabets and other special characters such as +, -, *, etc. is
 - a) Hexadecimal

b) Octal

c) BCD

d) ASCII

- xiv) The principal characteristic feature of gray code is
 - a) It changes by only one bit between two consecutive numbers
 - b) It has more number of ones
 - c) It has more number of zeros
 - d) It changes by two bits between two consecutive numbers

xv) Invalid numbers in BCD are

- a) 1001, 1000, 0111, 0000, 0010 and 0011
- b) 0001, 0010, 0111, 0110, 0010 and 0011
- c) 1010, 1011, 1100, 1101, 1110 and 1111
- d) 1000, 1001, 0111, 0010, 0011 and 0111

PART-B

Answer any five questions.

 $(5 \times 7 = 35)$

- 2. a) Explain the method of conversion of a voltage source into a current source.
 - b) Draw the circuit diagram of series RC circuit. Write the expressions for charging and discharging of the circuit. Show it graphically. (2+5)
- 3. a) Draw a series RL circuit excited by an a.c. source. Write the equations for voltage, impedance and phase angle.
 - b) Draw the circuit symbols for SPDT, DPDT and SPST switches. (4+3)
- 4. a) State Maximum power transfer theorem.
 - b) State Norton's theorem. With suitable circuit diagrams, explain the steps to Nortonisea resistive network. (2+5)
- Draw the circuit diagram of full wave bridge rectifier and explain its working. Draw the input and output wave forms. Mention its advantages and disadvantages.
- 6. a) What is a filter? Draw the circuit diagram of capacitor filter.
 - b) With the circuit diagram, explain working of Zener diode voltage regulator. (2+5)
- 7. a) Define α and β of a transistor.
 - b) Draw the experimental circuit to study CE characteristics of a transistor. Plot the input and output characteristics graphs and indicate the different regions.

8. a) Draw the diagram of voltage divider biasing circuit. Write the expressions for Q point.

- b) With necessary diagram, explain the working of JFET. (3+4)
- 9. a) Explain with numerical example, method to convert a decimal number into its binary equivalent. Consider the integer and fractional parts of decimal number.
 - b) Write the BCD and Excess 3 code for all the decimal digits. (4+3)

PART-C

Answer any four questions.

 $(4 \times 5 = 20)$

- 10. A series resonance circuit has a capacitor of 100 pF, an inductor of 100 μ H and a resistor of 5 Ω . Calculate.
 - i) Resonant frequency
 - ii) Band width when Q factor is 200.
- 11. Using Thevenin's theorem, find the current in $R_L = 10\Omega$ in the following circuit. Also write Thevenin's equivalent circuit.

- 12. Calculate efficiency and PIV of a half wave rectifier circuit with an input voltage of 220 V rms and load R_L of 100Ω . Given $r_d = 5\Omega$ and turns ratio of the transformer is 10 : 1.
- 13. Following observations have been recorded in an experiment to plot the characteristics of an NPN transistor in CE mode. Determine, r_i , r_0 and the current amplification factor β_{ac} .

V _{BE} (volt)	I _B (μΑ)	V _{CE} (volt)	I _c (mA)
0.65	50	6	5
0.70	100	6	10
0.70	100	11	10.5

14. Subtract the following numbers using 2's complement method

i)
$$(BF)_{16} - (FB)_{16}$$

ii)
$$(10010)_2 - (1001)_2$$

(3+2)

- 15. a) Convert the following Gray numbers in to equivalent binary numbers.
 - i) 1001010

- ii) 11001100
- b) Express the (F5)₁₆ in binary and decimal number.

(3+2)