

I Semester B.Sc. Examination, November/December 2018 (2014-15 and Onwards) (F + R) (CBCS) Paper - I: CHEMISTRY

Time: 3 Hours Max. Marks: 70

Instructions: 1) The question paper has two Parts. Answer both the Parts.

> 2) Draw diagram and write chemical equations wherever necessary.

PART - A

Answer any eight questions. Each question carries two marks.

 $(8 \times 2 = 16)$

- 1. Find the value of $\log 25$, if $\log 5 = 0.6990$.
- 2. Give the relationship between Van der Waal's constants and critical pressure of a gas. Mention its SI units.
- 3. What is inversion temperature?
- 4. State Stark-Einstein law.
- 5. Define critical solution temperature of a partially miscible liquid mixture.
- 6. Atomic radius decreases across a period. Give reasons.
- 7. Define electron affinity.
- 8. Give any two important chemical properties of Alkali metals.
- 9. What is a dibasic acid? Give an example.
- 10. Classify the following into electrophiles and nucleophiles BF₃, NH₃, CN $_{2}^{\Theta}$ $^{\Theta}$ NO₂
- 11. How cycloalkane is synthesised from benzene?
- 12. Mention any two important limitations of Bayer's strain theory.

PART – B

Answer any nine of the following. Each question carries six marks. (9×6=54			
13.	a)	Write Maxwell-Boltzmann distribution law of molecular velocities a explain the terms involved.	nd
	b)	Define exact differential. Give an example.	(4+2)
14.	a)	Derive an expression for critical volume of a gas from Van der Waa equation.	al's
	b)	Calculate the rms velocity of methane molecule at 400 K. Given, mo mass = 16×10^{-3} kg mol ⁻¹ , R = 8.314 JK ⁻¹ mol ⁻¹ .	lar (4+2)
15.	a)	Explain briefly Andrew's experiments on Carbon dioxide.	
	b)	Give the principle of liquifaction of air by Linde's process.	(4+2)
16.	a)	State and explain Beer-Lambert's law. Mention any two of its application	ns.
	b)	Give any two examples for (i) Chemical sensors (ii) Photosensitisers.	(4+2)
17.	a)	Mention any four differences between ideal and non ideal solutions.	
	b)	Define normality of a solution. Give an example.	(4+2)
18.	a)	Discuss Berkeley-Hartley's method of measurement of osmotic pressure of a solution.	ıre
	b)	What is surface tension? Mention its SI Units.	(4+2)
19.	a)	State and explain Nernst distribution law briefly.	
	b)	Explain Corey-House synthesis with an example.	(3+3)
20.	a)	Discuss variation of ionisation energy (i) across a period (ii) down the g	roup.
	b)	What is diagonal relationship? Give an example.	(4+2)
21.	a)	Explain the formation of oxides and carbonates of alkaline earth elemen	nts.
	b)	Give any two applications of electronegativity.	(4+2)
		그 사용을 취임하는 경기를 하는 것이 있는 사용이 되었습니다. 이번 사람들은 경기를 받는 것이다.	

22. a) Calculate the normality of

- i) KMnO₄ solution, when 25 cm³ of 0.09 N sodium oxalate solution reacts completely with 24.4 cm³ of KMnO₄ solution.
- ii) 4.92 g of Ferrous ammonium sulphate crystals dissolved in water and made up to 250 cm³ solution. (Eq. wt. mass of FAS = 392.14)
- b) What are indeterminate errors? Give an example.

(4+2)

- 23. a) Explain the stability of carbocations based on inductive effect.
 - b) Explain hyper conjugation with an example.

(4+2)

- 24. a) How alkynes are synthesised by dehydrohalogenation of
 - i) Vicinal dihalides
 - ii) Geminal dihalides.
 - b) What is wurtz reaction? Give an example.

(4+2)

- 25. a) Explain the mechanism of ozonolysis of alkenes.
 - b) Draw any two conformations of n-butane according to Newman projection formula. (4+2)