

II Semester B.Sc. Examination, May 2017 (F + R) (CBCS) (2014-15 and Onwards) ELECTRONICS - II

Electronic Circuits and Special Purpose Devices

Time: 3 Hours

Max. Marks: 70

Instructions: Answer all the questions from Part - A, any five questions

from Part – B and any four questions from Part – C.

Note: It is required to answer all the questions of Part – A in any one page answering the same questions multiple times will

not be considered for evaluation.

PART-A

	PART	-A
1.	Answer all the subdivisions :	(15×1=15
	 i) Gain decreases at low frequencies for because of 	
	a) Coupling capacitorc) Both a) and b)	b) Emitter by-pass capacitord) Inter electrode capacitance
	ii) Which amplifier offers best impedancea) Resistor coupled amplifierc) Direct coupled amplifier	ce matching with the load ? b) Transformer coupled amplifier d) Swamped amplifier
	iii) A common source JFET amplifier pra) 180° phase shiftc) 90° phase shift	oduces b) Zero phase shift d) 60° phase shift
	iv) Which power amplifier has maximura) Single ended class Ac) Class B	n distortion ? b) Transformer coupled class A d) Class C
	v) Efficiency of a single ended class Aa) 25%c) 78.5%	b) 50% d) > 90%
	vi) Cross over distortion is eliminated to a) Using germanium transistor c) By increasing ac input voltage	b) Properly biasing transistors d) By increasing <i>dc</i> supply voltage

vii)	What happens to resonant frequency of a tuned amplifier if its inductance quadrupled?			
	 a) Resonant frequency is quad-double b) Resonant frequency is reduced by c) Resonant frequency is reduced by d) Resonant frequency is not affecte 	or ha		
viii)	A differential amplifier has one input and the output is measured between collectors, the configuration is referred as			
	a) Dual input balanced outputc) Single input unbalanced output		Dual input unbalanced output Single input balanced output	
ix)	Ideal value of CMRR is			
	a) Zero	b)	Unity	
	c) Infinite	d)	70-90 dB	
x)	Differential gain means a) Amplifying the sum of inputs b) Amplifying the difference between c) Attenuating the difference between d) Attenuating the sum of inputs 	•		
xi)	Tail current is calculated by using a) -V _{EE} / R _C c) -V _{EE} / R _E		-V _{CC} /R _C -V _{CC} /R _E	
xii)	CC amplifier is a circuit example of a) Voltage series negative feedback c) Current series negative feedback	b)	Voltage shunt negative feedback	
xiii)	When a negative feedback is used in aa) Increasesc) Remains same	b)	amplifier, its gain bandwidth product Decreases All of the above	
xiv)	A mono stable multivibrator has a) Single stable state		Two stable states	
	c) No stable state	-	One stable state for short period	
xv)	A solar cell basically converts solar radiation into			
	a) Voltage		Current	
	c) Heat	d)	Light	

PART-B

Answer any five questions:

 $(5 \times 7 = 35)$

- 2. Draw the circuits of CC amplifier and swamped amplifier. Mention their applications.
- 3. Explain the working of common source *JFET* amplifier and derive the expression for its gain using equivalent circuit.
- 4. a) How the power amplifiers are classified?
 - b) Explain the frequency response of a double tuned amplifier for tight coupling and critical coupling. (3+4)
- 5. What is a current mirror? Explain its working with a circuit and give its importance.
- 6. State the conditions for sustained oscillations. With a circuit diagram, explain the working of a Hartley Oscillator.
- 7. What is a multivibrator? Explain the working of transistor astable multivibrator.
- 8. Explain the working of *SCR* full wave rectifier and derive the expression for its average output current.
- 9. Draw the circuit symbol of p channel enhancement type *MOSFET*, triac, diac, tunnel diode, varactor diode, photo diode and photo transistor.

PART-C

Answer any four questions:

 $(4 \times 5 = 20)$

10. For the given multistage amplifier calculate gain of second stage, overall gain and express it in dB.

- 11. A transistor rated for a maximum collector dissipation of 200 mW operates a single ended class A stage from a 15 V supply. Calculate the approximate values of
 - i) Maximum undistorted ac output power,
 - ii) The quiescent current and
 - iii) Turns ratio of the output transformer, if the load resistance is 24 $\,\Omega$.

Given collector efficiency of 50%.

- 12. In a dual input balanced output differential amplifier, I_E = 3 mA, R_C = 3 k Ω , R_E = 10 k Ω and β = 200. Calculate :
 - i) Differential gain
 - ii) Common mode gain and
 - iii) CMRR.
- 13. An amplifier with negative feedback has a voltage gain of 100. It is found that without feedback an input signal of 50 mV is required to produce a given output, where as with feedback, the input signal must be 600 mV for the same output. Calculate open loop gain, feedback factor and loop gain.
- 14. A unijunction transistor with $\eta=0.66$ is used in a relaxation oscillator circuit with 5.6 k Ω resistance and 0.022 μ F capacitance. Determine the time period, frequency of oscillation and new value of capacitance to have a frequency of 10 kHz.
- 15. Identify the type of seven segment display. Which are the input segments to be activated to display:

d) 9

