

II Semester B.Sc. Examination, May/June 2018 (CBCS) (Fresh + Repeaters) (2016-2017 and Onwards) PHYSICS – II

(2+6)

P.T.O.

Mechanics - 2, Heat and Thermodynamics - 2

Tin	ne: 3 Hours Max. Marks: 70
	Instruction : Answer any five questions from each Part.
(1	PART – A
Ar	nswer any five questions. Each question carries eight marks. (5×8=40)
1.	a) Define simple harmonic motion.
	b) Derive an expression for the time period of oscillations of a simple pendullum for small amplitude. (1+7)
2.	a) What is a cantilever? b) Give the theory of single cantilever. (1+7)
3.	Derive Maxwell's four thermodynamic relations from thermodynamical potentials.
4.	Derive clausius clapeyron's latent heat equation. What is the effect of pressure on melting point of ice and boiling point of water?
5.	a) Distinguish between inertial and non-inertial frames of reference.
	b) Describe Michelson-Morley experiment and discuss its result. (2+6)
6.	a) State the postulates of special theory of relativity.

b) Deduce Einstein's mass-energy relation E = mc², where the symbols

have their usual meaning.

- 7. a) Define moment of inertia and radius of gyration.
 - b) State and prove parallel axes theorem for two dimensional case.

(2+6)

- 8. a) Define group velocity and phase velocity.
 - b) Derive an expression for the speed of transverse waves on a uniform stretched string interms of tension and mass per unit length.

(2+6)

PART - B

Solve any five problems. Each problem carries four marks.

 $(5 \times 4 = 20)$

- 9. A square lamina of side 0.30 m oscillates in a vertical plane about a horizontal axis perpendicular to its plane. Calculate the minimum time period of oscillations of compound pendulum. Given $K = \frac{L}{\sqrt{6}}$ and g = 9.8 m/s².
- 10. Find the amount of work done in twisting a steel wire of radius 1 mm, length 0.25 m through an angle of 45°. Given the rigidity modulus for steel is 8×10^{10} N/m².
- 11. Calculate the specific heat of saturated steam given that specific heat of water at $100^{\circ}\text{C} = 4242 \text{ JK}^{-1}$ and latent heat of vapourisation decreases with size in temp at the rate of 2688 JK⁻¹ latent heat of vapourisation of steam = $540 \times 4200 \text{ JK}^{-1}$.
- 12. Calculate the change in temperature produced by adiabatic throttling process of one gram mole of oxygen when pressure reduced by 60 atmosphere. The initial temperature of the gas is 27°C. Given for oxygen Cp = 29.53 JK⁻¹ mole ⁻¹, R = 8.3 JK⁻¹ mole⁻¹, a = 0.132 Nm⁴ mole⁻², b = 3.12 × 10⁻⁵ m³ mole⁻¹.
- 13. At what speed the mass of the particle will be 1.25 times its rest mass ? Given the velocity of light is 3×10^8 m/s.
- 14. A π meson has mean life time of 2.2 × 10⁻⁸s when measured at rest. How far does it travel before decaying into another particle if its sped is 0.99 C.
- Calculate the angular momentum of a solid sphere of mass 5 kg and its radius
 cm spinning at 12 revolutions per second.
- 16. A string of length 0.5 m and mass per unit length is 2 x 10⁻⁴ kg/m is stretched with a tension of 12 N. Calculate the velocity and frequency of fundamental note.

PART - C

Answer any five questions. Each question carries two marks.

 $(5 \times 2 = 10)$

- 17. a) In a simple harmonic motion, at which position P.E. and K.E. are maximum.
 - b) Springs are made of copper or steel. Why?
 - c) Why C_p is greater than C_v ?
 - d) Hydrogen and Helium shows negative Joule-Thomsons effect at room temperature. Explain.
 - e) Name any two frame dependent forces.
 - f) Is the moving clock go slow or fast? Explain.
 - g) What happens, when a man on turn table out stretches his hands suddenly?
 - h) Can sound waves be polarised. Explain.