

III Semester B.Sc. Examination, Nov./Dec. 2017 (CBCS) (F + R) (2015-16 and Onwards) STATISTICS – III Sampling Theory and Estimation

Time: 3 Hours

Max. Marks: 70

- Instructions: 1) Answer five subdivisions from Section A, five subdivisions from Section B and five questions from Section C.
 - 2) Answer Section A in first two pages of answer book only.
 - 3) Scientific calculator is allowed.

SECTION - A

10

I. Answer any five sub-divisions from the following:

 $(5 \times 2 = 10)$

- 1) a) Define population, finite population and infinite population.
 - b) For SRSWOR, prove that $E(\overline{y}) = \overline{Y}$.
 - c) In stratified random sampling, obtain an unbiased estimator of population mean $\overline{\gamma}$.
 - d) What is systematic sampling? Explain.
 - e) Define a sufficient estimator and give an example.
 - f) Define efficient estimator and most efficient estimator.
 - g) Define minimum variance bound estimator.
 - h) Obtain moment estimator of μ of Normal N (μ , 1).

SECTION - B

15

II. Answer any five sub-divisions from the following:

(5×3=15)

- 2) a) What is sample survey? Mention its limitations.
 - b) Explain the method of selecting a random sample using random numbers.
 - c) In SRSWOR, prove that

 $E[\hat{A}] = A$ where $\hat{A} = Np$

- d) If $X_1, X_2, ..., X_n$ is a random sample from exponential distribution with mean θ , then verify whether $\overline{\chi}$ is an unbiased estimator of θ .
- e) Obtain the efficiency of sample mean over sample median in estimating mean of normal population.
- f) Define the terms:
 - i) Standard error
 - ii) Mean square error.
- g) Obtain moment estimator of θ of uniform distribution U (0, θ).
- h) Explain the general method of obtaining the confidence interval for the population parameter.

III. Answer any five questions from the following:

 $(5 \times 9 = 45)$

9

3) a) Explain sampling and non-sampling errors.

b) Obtain the sampling distribution of
$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
. (4+5)

- 4) a) In SRSWOR, prove that the probability of selecting ith unit in the rth draw is equal to the probability of its selection in the 1st draw.
 - b) Derive an expression for sample size under SRSWOR for estimating population mean $\overline{\gamma}$. (5+4)
- 5) What is allocation of sample size in stratified random sampling? With usual notations obtain an expression for $V(\overline{y}_{st})$ under proportional allocation and Neymann allocation.
- 6) Distinguish between linear and circular systematic sampling. Also prove

that
$$V(\overline{y}_{sys}) = \frac{N-1}{N}S^2 - \frac{N-K}{N}S_{wsy}^2$$
.

7) a) If $X_1, X_2, ..., X_n$ is a random sample from normal $N(\mu, \sigma^2)$, μ is known then verify whether $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$ is consistent estimator for σ^2 .

- b) For a random sample of size n from Poisson distribution $P(\lambda)$, verify whether $\sum x_i$ is sufficient estimator of λ . (5+4)
- 8) a) State Crammer-Rao inequality. Obtain MVB estimator of P of Bernoulli distribution B(1, P), based on a random sample of size n.
 - b) Obtain an estimator of the parameter σ^2 of normal N (μ , σ^2) using maximum likelihood method (μ is known). (4+5)
- 9) a) Obtain (1α) 100% confidence interval for the parameter P of Bernoulli population B(1, P) based on a random sample of size n.
 - b) If X_{11} , X_{12} , ..., X_{1n_1} is a random sample of size n_1 from $N(\mu_1, \sigma_1^2)$ and X_{21} , X_{22} , ..., X_{2n_2} is another random sample of size n_2 from $N(\mu_2, \sigma_2^2)$. Obtain (1α) 100% confidence interval for σ_1^2/σ_2^2 . (4+5)