

III Semester B.Sc. Examination, November/December 2018 (CBCS) (Fresh) (2018 – 19 and Onwards) STATISTICS – III Statistical Inference – I

3 U.S. COLLEGE * STATES

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer any ten sub-divisions from Section A and any five questions from Section B.

2) Scientific calculators are permitted.

SECTION - A (20 Marks)

I. Answer any ten sub-divisions from the following:

 $(10 \times 2 = 20)$

- 1) a) What is standard error? Write the standard error of sample mean.
 - b) Explain with an example location scale family of distributions.
 - c) Distinguish between parameter and statistic with an example.
 - d) Define asymptotic unbiased estimator. Give an example.
 - e) Define sufficiency.
 - f) Define Minimum Variance Unbiased Estimator (MVUE).
 - g) State the properties of moment estimators.
 - h) What is interval estimation? Explain.
 - i) Write (1α) 100% confidence interval (C.I.) for binomial proportion P.
 - j) Write (1α) 100% confidence interval population mean μ , when sampling is from $N(\mu, \sigma_0^2)$.
 - k) Explain simulation.
 - I) Mention the advantages of simulation.

SECTION – B (50 Marks)

II. Answer any five questions from the following:

 $(5 \times 10 = 50)$

- 2) a) Obtain sampling distribution of sample mean \bar{x} , when the random sample of size 'n' is drawn from normal $N(\mu, \sigma_n^2)$ distribution.
 - b) State and prove additive property of chi-square distribution.

(5+5) P.T.O.

- 3) a) Show that t-distribution is symmetrical about mean.
 - b) Obtain mean and variance of F-distribution.

(4+6)

- 4) a) Show that, with usual notations, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$ is both unbiased and consistent estimator of the population variance σ^2 .
 - b) Define Mean Square Error (MSE) with usual notations, show that $MSE(T) = V(T) + (Bias)^2$. (7+3)
- 5) a) State and prove sufficient condition for consistency.
 - b) Let X_1 , X_2 , X_3 , ..., X_n is a random sample of size 'n' from $N(\mu, \sigma^2)$ distribution. Show that sample mean is more efficient than sample median. (4+6)
- 6) a) State Neyman factorization theorem. Obtain sufficient statistic for λ in Poisson P(λ) distribution.
 - b) A random sample $(X_1, X_2, ..., X_n)$ of size 'n' is drawn from N(0, σ^2) distribution. Examine whether $\sum_{i=1}^{n} \frac{X_i^2}{n}$ is a MVB estimator of σ^2 . (5+5)
- 7) a) Explain Maximum Likelihood Estimator (MLE). Obtain MLE of P in binomial B(N, P) distribution (N is known).
 - b) Obtain moment estimator of μ and σ^2 in normal N(μ , σ^2) distribution. (5+5)
- 8) a) Obtain (1α) 100% CI for the difference of two binomial population proportions $(P_1 P_2)$.
 - b) Obtain (1α) 100% CI for the population variance σ^2 when (i) μ is known (ii) μ is unknown when the sample is drawn from N(μ , σ^2) distribution. (4+6)
- 9) a) Describe the method of generating a random sample from exponential distribution.
 - b) Explain the method of generating random samples from $N(\mu, \sigma^2)$ distribution. (5+5)