

III Semester B.Sc. Examination, November/December 2018

(CBCS)

(2015 – 16 & Onwards) (F + R) CHEMISTRY – III

Time: 3 Hours Max. Marks: 70

Instructions: 1) The question paper has two Parts.

2) Answer both the Parts.

3) Write diagrams and chemical equations wherever necessary.

PART - A

Answer any eight of the following questions. Each question carries two marks.

 $(8 \times 2 = 16)$

- 1. What is energy of activation ?
- 2. Give the limitations of I law of thermodynamics.
- 3. Define heat capacity at constant volume and at constant pressure.
- 4. Calculate the work done when one mole of an ideal gas expands isothermally and reversibly at 27°C from a volume of 15 dm³ to 25 dm³.

(Given $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)

- 5. Write the equation for Langmuir adsorption isotherm and explain the terms involved in it.
- 6. Give an expression for number average molecular weight of a polymer.
- 7. Name an important ore of uranium. Give its composition.
- 8. What is Lucas reagent? Where it is used?
- 9. What are thiols? Give an example.

- 10. What is the function of K in plant nutrient?
- 11. Why organolithium compounds are more reactive than organomagnesium compounds?
- 12. What are epoxides? Give an example.

PART - B

Answer any nine of the following questions. Each question carries six marks. $(9 \times 6 = 54)$ 13. a) Derive an expression for the velocity constant of a second order reaction. $A + B \rightarrow Products when a = b$. b) Define temperature co-efficient of a reaction. (4+2)14. a) Explain Lindemann hypothesis of unimolecular reaction. b) The rate constants of a reaction at 25°C is 3.46×10^{-5} and at 35°C is 4.87×10^{-3} respectively. Calculate the energy of activation. (4+2)15. a) Derive an expression for the work done in reversible isothermal expansion of an ideal gas. b) State II law of thermodynamics in terms of entropy. (4+2)16. a) Explain spontaneous and nonspontaneous processes with example. b) Give the Kirchoff's equation and explain the terms involved. (4+2)17. a) Describe the structure of diborane. b) Calculate the efficiency of heat engine working between 300°C and 100°C. (4+2)18. a) Explain the mechanism of intermediate compound formation theory of catalysis. b) What are adsorption indicators? Give an example. (4+2)

19.	a) How is thorium extracted from monazite sand?b) How are fertilizers classified? Give example for each class.	(4+2)
20.	a) Explain salient features of Ellingham's diagram.b) Write two differences between organic and inorganic polymers.	(4+2)
21.	 a) How alcohols are distinguished by oxidation reaction? b) What happens when glycerol is heated with Con. H₂SO₄? 	(4+2)
22.	 a) Write the mechanism of reaction of glycols with HIO₄. b) How does thiols react with metallic Na? 	(4+2)
23	a) Write the mechanism of Riemer-Tiemann reaction.b) Phenols are more acidic than alcohols. Justify the statement.	(4+2)
24.	a) Explain Williamson's ether synthesis with an example.b) Give a method of preparation of epoxides.	(2+2+2)
25.	c) Give an equation to show that ether acts as a Lewis base.a) Explain the manufacture of super phosphate of lime.b) Give one synthetic application of Grignard reagent.	(4+2)
	b) divident	