

IV Semester B.Sc. Examination, May 2017 (CBCS) (2015-16 and Onwards) (Fresh + Repeaters) STATISTICS – IV Testing of Hypotheses

Time: 3 Hours

Max. Marks: 70

Instructions: Answer any five sub-divisions from Section A, any five sub-divisions from Section B and any five questions from Section C. Scientific calculators may be allowed.

SECTION - A (10 Marks)

I. Answer any five sub-divisions from the following:

 $(5 \times 2 = 10)$

- 1) a) Distinguish between simple and composite hypotheses.
 - b) Distinguish between Type I and Type II errors.
 - c) What is p-value? Give its interpretation.
 - d) State the applications of central limit theorem.
 - e) Mention the need for Fisher's z-transformation technique.
 - f) What is Yate's correction? State its necessity.
 - g) State monotone likelihood ratio property.
 - h) What are the demerits of non-parametric test?

SECTION - B (15 Marks)

II. Answer any five sub-divisions from the following:

 $(5 \times 3 = 15)$

- 2) a) Let X_1 , X_2 , X_3 be a random sample from Poisson P(λ) distribution. It is required to test H_0 : $\lambda = 2$ Vs H_1 : $\lambda = 4$ and H_0 is rejected if $\sum_{i=1}^3 X_i \ge 3$. Obtain probabilities of type-I and type-II errors.
 - b) Distinguish between randomized and non-randomized tests.
 - c) If (i) $x_1 = 1.5$ and $x_2 = 2.5$ (ii) $x_1 = 3.5$, $x_2 = 5.5$, $x_3 = 2.5$ are random samples from continuous distribution. It is required to test a certain null

hypothesis by using the test function $\Phi(x_1, x_2) = \begin{cases} 1, & \text{if } \overline{x} > 2.5 \\ 0, & \text{if } \overline{x} < 2.5 \end{cases}$. What is

your decision?

- d) Describe the general procedure for normal test of significance.
- e) Explain the test of significance for testing correlation coefficient when $\rho \neq 0$.

- Define co-efficient of association (Q) and co-efficient of colligation (Y). Show that $Q = \frac{2Y}{1+Y^2}$.
- g) Describe a test procedure of obtaining an MP test for testing a simple null hypothesis against a simple opposite hypothesis.
- h) Explain the run test for randomness.

SECTION - C (45 Marks)

III. Answer any five questions from the following:

 $(5 \times 9 = 45)$

- 3) a) Describe the large sample test for testing equality of two correlation coefficients through Fisher's z-transformation.
 - b) Explain the small sample test for testing population mean by assuming σ^2 is unknown. (4+5)
- 4) a) Find the chi-square test for goodness of fit in case of $2 \times k$ contingency table.
 - b) Discuss the test procedure for testing regression coefficient.

(4+5)

- 5) a) Find most power full test and power of the test for testing $H_0: \theta = \theta_0 \text{ Vs } H_1: \theta = \theta_1 (\theta_0 < \theta_1) \text{ in Poisson P}(\theta) \text{ distribution.}$
 - b) Obtain the UMP test of lavel α for testing $H_0: \theta = \theta_0 \text{ Vs } H_1: \theta > \theta_0$ in exponential distribution with mean θ . (4+5)
- 6) a) Obtain most power full test and power of the test for testing

$$\begin{split} &H_0:\theta=\theta_0 \text{ Vs } H_1:\theta=\theta_1\big(\theta_0>\theta_1\big) \text{ in the distribution } f(x,\theta)=(1+\theta)x^\theta \text{ ,} \\ &0< x<1 \text{ and } \theta>-1. \end{split}$$

- b) Obtain UMP test of level α for testing $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$ in normal $N(\mu, 1)$ distribution. (4+5)
- 7) a) Describe Wald Wolfowitz run test.
 - b) Explain sign test for (I) one and (II) two sample problems. (5+4)
- 8) a) State the relationship between the Mann-Whitney U-statistic and Wilcoxon's rank sum T-statistics and verify through an example.
 - b) Explain the test for Spearman's rank correlation coefficient. (5+4)
- 9) a) Describe S.P.R.T.
 - b) Derive the SPRT for testing $H_0: \mu = \mu_0 \text{ Vs } H_1: \mu = \mu_1(\mu_1 > \mu_0)$ in $N(\mu, \sigma^2)$ distribution (σ^2 is known). (4+5)