IV Semester B.Sc. Examination, May 2017 (CBCS) (2015-16 and Onwards) (Fresh+Repeaters) ELECTRONICS – IV Digital Electronics and Verilog

Time: 3 Hours

Max. Marks: 70

Instructions: Answer all questions from Part - A, any five questions

from Part - B and any four questions from Part - C.

Note: It is required to answer all the questions of Part – A in any one page and to be answered only once. In this Part answering the same question multiple times will not be considered for evaluation.

PART-A

Answer all the subdivisions:

(15×1=15)

- 1. i) The output of a gate is LOW only when all the inputs are HIGH. The gate is
 - a) AND
- b) NAND
- c) OR
- d) NOR
- ii) The maxterm representation of $A + \overline{B} + C$ is
 - a) M₂
- b) M₄
- c) M₅
- d) M_3
- iii) In a 4 variable K-map, an octet eliminates
 - a) Three variables and their complements
 - b) Two variables and their complements
 - c) One variable and its complement
 - d) Four variables and their complements
- iv) In a certain digital waveform, the period is twice the pulse width. The duty cycle is
 - a) 100%
- b) 66%
- c) 50%
- d) 0%
- v) The input to a BCD-to-7 segment decoder is 0101. The active outputs are
 - a) a, c, f, g
- b) a, b, c, f, g, c) b, c, e, f
- d) a, c, d, f, g

- vi) The IC 74147 is
 - a) Decimal to BCD priority encoder
 - b) BCD to decimal decoder
 - c) BCD to 7-segment decoder
 - d) 4-bit magnitude comparator

is

vii)	In a negative edo	ge triggered JK ency of Q outpu	flip ut is	o-flop, J=K=1. 7	The	clock frequency	
	a) 20 kHz	b) 10 kHz	c)	5 kHz	d)	1 kHz	
viii)	A three – bit counter has			possible natural counts.			
	a) 7	b) 8	c)	9	d)	12	
ix)	has the highest priority in a JK flip-flop.						
	a) Jinput	b) Kinput	c)	Preset input	d)	Clock input	
x)	In Verilog, the bit pattern for the constant 12' h13x is						
	a) 0001101xxxxx		b)	00001101xxxx			
	c) 00010011xxxx		d)	000011010000			
xi)	In verilog 'h1234 is a						
	a) 16 bit number		b)	32 bit number			
	c) 64 bit number		•	8 bit number		1 - 1	
xii)	Which is the correct method of specifying time scale in verilog?						
	a) 110ns/10ps					•	
xiii)	In the verilog statement assign # $(4, 8)$ a = b; the turn off delay is						
	a) 4 time units				d)	8 ns	
xiv)	The statements in a begin end block are executed						
	a) Concurrently		_	Sequentially			
	c) Randomly		d)	None of the abo	ve		
xv)	initial						
	begin						
	#5 x = 1'b0;	//statement 1					
	#15y = 1'b1;	//statement 2					
	end						
	In the above verilog code, the statement 2 will be executed at						
	a) 15 time units		b)	20 time units			
	c) 5 time units		d)	Current simulat	ion 1	time	

5

PART-B Answer any five questions: (5×7≡35) 2. a) Realize AND, EXOR, OR and NAND gates using only NOR gates. b) Draw the circuit of a CMOS inverter and explain its operation. (4+3)3. What is a decoder? Draw the logic circuit of a 3:8 decoder with active LOW outputs. Explain its operation with the help of its truth table. 7 4. a) With a neat circuit diagram explain the operation of a 4 - bit Digital-to-analog converter with binary weighted resistors. Write the expression for its analog output. b) Write the truth table of a full adder. (5+2)5. a) Explain the operation of a negative edge triggered JK flip-flop with its block diagram. Write its truth table and timing diagram. b) What are preset and clear inputs in a flip-flop? (5+2)6. Design a mod – 5 synchronous counter using K – Map technique. 7 7. a) Distinguish between wor and tril nets with their syntax and truth tables. b) Define the terms synthesis, test bench and vector net. (4+3)8. a) Describe dataflow style of verilog. How does it differ from behavioural style? b) With the help of a circuit diagram, write a verilog code for 4: 2 encoder In dataflow style. Also write its truth table. (4+3)9. Explain the procedural and continuous assignments in verilog with examples for each. PART-C Answer any four questions: $(4 \times 5 = 20)$ 10. Simplify the following Boolean expression and implement the simplified expression.

 $Y = (\overline{AB.C}) \cdot \overline{CD} + \overline{D}$

11. Using K-map simplify the following Boolean expression and realize the simplified expression using gates.

 $Y(A, B, C, D) = \sum m (5, 7, 8, 10, 13, 15)$ and don't care condition $d(A, B, C, D) = \sum m (0, 1, 2, 6)$.

12. Draw the output waveforms for Y0, Y1, Y2 and Y3 for the given inputs.

5

5

- 13. Draw the logic circuit diagram of a 4-bit Serial-in-serial-out shift register and explain its operation taking the data 1101 as an example.
- 14. Write a verilog code to implement full subtractor. Write its truth table. 5
- 15. Write a verilog code to implement 2 bit magnitude comparator. 5