

V Semester B.A./B.Sc. Examination, November/December 2017 (Semester Scheme) (CBCS) (2016 – 17 & Onwards) (Fresh + Repeaters) MATHEMATICS – V

Time: 3 Hours

Max. Marks: 70

Instruction : Answer all questions.

PART-A

Answer any five questions:

 $(5 \times 2 = 10)$

- 1 a) In a ring $(R, +, \cdot)$ prove that $\forall a, b, c \in R, a \cdot (b c) = a \cdot b a \cdot c$.
 - b) Show that the set of even integers is not an ideal of the ring of rational numbers.
 - c) Prove that every field is a principal ideal ring.
 - d) If $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$, show that \vec{F} is irrotational.
 - e) Find the maximum directional derivative of xsinz ycosz at (0, 0, 0).
 - f) Prove that $E\nabla = \nabla E = \Delta$.
 - g) Construct the Newton's divided difference table for the following data:

X	4 , 7		9	12	
f(x)	- 43	83	327	1053	

h) Using Trapezoidal rule to evaluate $\int_{0}^{1} \frac{dx}{1+x}$ where

x	0	1/6	2/6	3/6	4/6	5/6	(141)
y = f(x)	$\frac{1}{\pi}$	0.8571	0.75	0.6667	0.6	0.5455	0.5

PART-B

Answertwo full questions:

 $(2 \times 10 = 20)$

- 2. a) Prove that the set $R = \{0, 1, 2, 3, 4, 5\}$ is a commutative ring with respect to ' \oplus_6 ' and ' \otimes_6 ' as the two compositions.
 - b) Prove that a ring R is without zero divisors if and only if the cancellation laws hold in R

OR

- 3. a) Show that an ideal S of the ring of integers (z, +, •) is maximal if and only if S is generated by some prime integer.
 - b) Prove that a commutative ring with unity is a field if it has no proper ideals.
- 4. a) If R is a ring and $a \in R$, let $I = \{x \in R / ax = 0\}$ prove that I is a right ideal of R.
 - b) If $f: R \to R'$ be a homomorphism with kernel K, then prove that f is one-one if and only if $K = \{0\}$.

OR

- 5. a) Let R = R' = C be the field of complex numbers. Let f: R → R' be defined by f(z) = Z where Z is the complex conjugate of z, show that f is an isomorphism.
 - b) Prove that every homomorphic image of a ring R is isomorphic to some residue class (quotient) ring thereof.

PART-C

Answertwo full questions:

 $(2 \times 10 = 20)$

- 6. a) Prove that $\nabla^2(f(r)) = f''(r) + \frac{2}{r}f'(r)$, where $r^2 = x^2 + y^2 + z^2$.
 - b) Find the unit normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1, 2, -1).

- 7. a) Show that $Curl \left[\vec{r} \times (\vec{a} \times \vec{r}) \right] = 3\vec{r} \times \vec{a}$ where \vec{a} is constant vector and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
 - b) If the vector $\vec{F} = (3x + 3y + 4z) \hat{j} + (x ay + 3z) \hat{j} + (3x + 2y z) \hat{k}$ is solenoidal, find 'a'.
- 8. a) Prove that $\nabla^2 \left(\frac{1}{r} \right) = 0$, where $r^2 = x^2 + y^2 + z^2$.
 - b) If $\vec{F} = \nabla$ (2x³ y² z⁴), find Curl \vec{F} and hence verify that Curl (∇ ϕ) = 0. OR
- 9. a) If ϕ is a scalar point function and \vec{F} is a vector point function, prove that $\operatorname{div}(\phi\vec{F}) = \phi\operatorname{div}\vec{F} + \operatorname{grad} \phi \cdot \vec{F}$
 - b) Find Curl (Curl \vec{F}) if $\vec{F} = x^2 y_{\hat{i}} 2xz_{\hat{j}} + 2yz_{\hat{k}}$.

PART - D

Answer two full questions:

(2×10=20)

10. a) Use the method of separation of symbols to prove that

$$u_0 + u_1 x + u_2 x^2 + \dots$$
 to ∞

$$= \frac{u_0}{1-x} + \frac{x\Delta u_0}{(1-x)^2} + \frac{x^2\Delta^2 u_0}{(1-x)^3} + \dots \text{ to } \infty.$$

- b) i) Evaluate Δ^{10} [(1 ax) (1 bx²) (1 cx³) (1 dx⁴)].
 - ii) Express $f(x) = 3x^3 + x^2 + x + 1$ as a factorial polynomial (taking h = 1).

 OR

11. a) Find a second degree polynomial which takes the following data:

x	1	2	3	4
f(x)	-1	-1	1	5

b) Find f(1.9) from the following table:

x	x 1		1.8	2.2	
f(x)	2.49	4.82	5.96	6.5	

12. a) Using Lagrange's interpolation formula find f(6) for the following data:

x	2	5	7	10	12
f(x)	18	180	448	1210	2028

b) Using Simpson's $\frac{3}{8}^{th}$ rule evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 sub intervals.

13. a) Following is the table of the normal weights of babies during the first few months of life.

Age in months	2	5	8	10	12
Weight in kgs	4.4	6.2	6.7	7.5	8.7

Estimate the weight of a baby of 7 months old using Newton's divided difference table.

b) Obtain an approximate value of $\int_0^6 \frac{dx}{1+x^2}$ by Simpson's $\frac{1}{3}^{rd}$ rule.

V Semester B.A./B.Sc. Examination, November/December 2017 (Fresh + Repeaters) (CBCS) (2016-17 and Onwards) MATHEMATICS – VI

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART-A

Answer any five questions.

(5×2=10)

- 1. a) Write the Euler's equation when f is independent of x.
 - b) Find the differential equation in which functional $\int_{x_1}^{x_2} (y^2 + x^2y^1)$ ds assumes extreme values.
 - c) Define Geodesic on a surface.
 - d) Show that $\int_{C} (x+y)dx + (x-y)dy = 0$ where 'c' is simple closed path.
 - e) Evaluate $\int_{0}^{a} \int_{0}^{b} (x^2 + y^2) dx dy$.
 - f) Evaluate $\iint_{000}^{123} (x+y+z) dx dy dz.$
 - g) State Stoke's theorem.
 - h) Using Green's theorem show that the area bounded by simple closed curve C is given by $\int_C x dy y dx$.

PART-B

Answertwo full questions.

 $(2 \times 10 = 20)$

- 2. a) Derive the Euler's equation in the form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.
 - b) Show that the equation of the curve joining the points (1, 0) and (2, 1) for $I = \int_{1}^{2} \frac{1}{x} \sqrt{1 + (y')^2} dx$ is a circle.

OR

3. a) Show that the general solution of the Euler's equation for the integral

$$I = \int_{x_1}^{x_2} \left(\frac{y'}{y}\right)^2 dx$$
 is $y = ae^{bx}$.

- b) Find the Geodesic on a surface of right circular cylinder.
- 4. a) If cable hangs freely under gravity from two fixed points, show that the shape of the curve is catenary.
 - b) Find the extremal of the functional $I = \int_{0}^{\pi} ((y')^2 y^2) dx$ under the conditions

$$y = 0$$
, $x = 0$, $x = \pi$, $y = 1$ subject to the condition
$$\int_{0}^{\pi} y dx = 1$$
.

OR

- 5. a) Find the extremal of the integral $I = \int_{0}^{1} (y')^{2} dx$ subject to the constraint $\int_{0}^{1} y dx = 1$ and having y(0) = 0, y(1) = 1.
 - b) Find the extremal of the functional $\int_{x_1}^{x_2} (y^2 + (y')^2 + 2ye^x) dx$.

PART-C

Answer two full questions.

 $(2 \times 10 = 20)$

- 6. a) Evaluate $\int_{c} (x^2 + 2y^2x) dx + (x^2y^2 1) dy$ around the boundary of the region defined by $y^2 = 4x$ and x = 1.
 - b) Evaluate $\iint_R (x^2 + y^2) dy dx$ over the region in the positive quadrant for which $x + y \le 1$.

OR

- 7. a) Evaluate $\int_{0}^{a} \int_{0}^{2\sqrt{ax}} x^2 dy dx$ by changing the order of integration.
 - b) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration.
- 8. a) Evaluate $\int_{-a}^{a} \int_{-c}^{b} \int_{-c}^{c} (x^2 + y^2 + z^2) dz dy dx.$
 - b) By changing into polar co-ordinates, evaluate $\iint_R \sqrt{x^2 + y^2} \, dxdy$, where R is a circle $x^2 + y^2 = a^2$.

OR

- 9. a) Find the volume bounded by the surface $z = a^2 x^2$ and the planes x = 0, y = 0, z = 0, y = 0.
 - b) Evaluate $\iiint_R xyz \, dx \, dy \, dz$ by changing it to the cylindrical polar coordinates where R is region bounded by the planes x = 0, y = 0, z = 0, z = 1 and the cylinder $x^2 + y^2 = 1$.

PART-D

Answertwo full questions.

 $(2\times10=20)$

- 10. a) Evaluate using Green's theorem in the plane for $\int_{c} (3x^2 8y^2) dx + (4y 6xy) dy$, where 'c' is boundary of the region enclosed by x = 0, y = 0 and x+y = 1.
 - b) Using Gauss-divergence theorem, show that:
 - i) $\iint_{S} \vec{r} \cdot \hat{n} ds = 3v$ ii) $\iint_{S} \nabla r^{2} \hat{n} ds = 6v$.

OR

- 11. a) State and prove Green's theorem.
 - b) Using Gauss-divergence theorem. Evaluate $\iint_s \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 4xz\hat{i} y^2\hat{j} + yz\hat{k}$ and s is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 12. a) Verify Stoke's theorem for $\vec{F} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$ where s is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.
 - b) Using Gauss divergence theorem evaluate $\iint_s (x\hat{i} + y\hat{j} + z^2\hat{k}).\hat{n} ds$ where s is closed surface bounded by cone $x^2 + y^2 = z^2$ and plane z = 1.

OR

- 13. a) Evaluate by Stoke's theorem $\int_{c} \sin z \, dx \cos x \, dy + \sin y \, dz$, c is the boundary of the rectangle $0 \le x \le \pi, 0 \le y \le 1, z = 3$.
 - b) Verify Green's theorem for $\int_{c}^{c} (xy + y^2) dx + x^2 dy$ where c is the closed curve bounded by y = x and $y = x^2$.