

V Semester B.Sc. Examination, Nov./Dec. 2017 (Semester Scheme) (CBCS) (F+R) (2016-17 and Onwards) CHEMISTRY – V Organic Chemistry

Time: 3 Hours

Max. Marks: 70

Instructions: i) The question paper has two Parts. Answer both the Parts.

ii) Draw diagrams and chemical equations wherever necessary.

S bePART - A some conditional and a requirement of the

Answer any eight of the following questions. Each question carries two marks. (8×2=16)

1. Define centre of symmetry with an example.

- 2. What are mesocompounds? Why they are optically inactive?
- 3. How is aniline prepared from nitrobenzene?
- 4. Explain 2° amines are more basic than 1° amines.
- 5. Explain chichibabin reaction.
- 6. Write the Haworth structure of α -maltose.
- 7. Piperidine is more basic than pyridine. Give reason.
- 8. Give the evidence to prove the presence of five hydroxyl groups in glucose.
- 9. What are auxochromes? Give an example.
- 10. How is Furan prepared from Furfural?
- 11. What are equivalent and non-equivalent protons in NMR spectroscopy?
- 12. What are mordant dyes? Give an example.

PART-B

Ar	iswe	er any nine of the following questions. Each question carries six marks. (9×6=54)
13	. a)	Write the stereo isomers of 2, 3 dichloro butane. Identify a pair of enantion and diastereomer's.	ers
	b)	Draw the conformers of 1,4 dimethylcyclohexane.	(4+2)
14		How is Benzenediazonium chloride converted into i) Phenyl hydrazine ii) Phenol	(4.0)
		How is ethyl amine prepared by Gabriels Phthalimide synthesis?	(4+2)
15.		Explain the optical activity of biphenyl derivatives with an example. Write R and S configuration of lactic acid.	(4+2)
16.		Discuss the aromaticity of Furan.	
		What happens when nicotinic acid is heated?	(4+2)
17.		What are epimers? Give an example. Explain the conversion of fructose to glucose.	(2+4)
18.		Describe the synthesis of α -citral.	
	-	Mention two uses of morphine.	(4+2)
19.		Give a reaction to show that nicotine has pyridine and pyrolidine ring system in its structure.	em
		Write the structure of camphor.	(4+2)
20.		Explain shielding and deshielding of protons in NMR spectroscopy. Mention the type of bending modes of vibrations in IR spectroscopy.	(4+2)
21.	a)	i) What is spin-spin splitting?	
	b)	ii) Why is TMS used as a reference compound in NMR spectroscopy? Mention the electronic transition that takes place when uv radiations are	
00	- \	passed through acetaldehyde.	(4+2)
22.		Write the advantages of spectroscopic techniques. Explain geometrical isomerism with an example.	(4+2)
23.	a)	Write the synthesis of indigo from aniline.	
	b)	What are analgesics? Give an example.	(4+2)
24.	a) b)	Describe the synthesis of paracetamol from phenol. What are tranquillizers? Give an example.	(4+2)
25.	a) b)	Explain how the ring size of glucose in determined by HIO_4 oxidation method what is diazotisation?	

V Semester B.Sc. Examination, November/December 2017 (Semester Scheme) (CBCS) (F + R) (2016-17 and Onwards) CHEMISTRY

Physical Chemistry (Paper – VI)

Time: 3 Hours

Max. Marks: 70

Instructions: 1) The question paper has two Parts. Answer both the Parts.

2) **Draw** diagrams and write chemical equation **wherever** necessary.

PART-A

Answer any eight of the following questions. Each question carries two marks: (8×2=16)

- 1. Define ionic mobility.
- 2. State Kohlrausch law of independent migration of ions.
- 3. Give any two limitations of Arrhenius theory.
- 4. How is the cell constant of a given conductivity cell determined?
- 5. The standard electrode potentials of zinc and copper electrodes in their salt solutions are 0.76 V and +0.34 V respectively. Calculate e.m.f. of the Daniel cell.
- 6. Name a primary and secondary reference electrode.
- 7. Explain induced dipole moment with an example.
- 8. Define zero point energy of a vibrating molecule. Give its equation.
- 9. Mention any two advantages of Dropping Mercury Electrode (D.M.E.).
- 10. State Franck-Condon principle.
- 11. Give any two applications of Raman Spectroscopy.
- 12. What is the selection rule for pure vibration and pure rotational transitions?

P.T.O.

PART - B

Answer any nine of the following questions. Each question carries six marks: (9×6=54)

- 13. a) Describe the principle involved in the conductometric titration of a strong acid verses strong base graphically.
 - b) The molar conductances at infinite dilution for NaCl, NH₄Cl and NaOH are 12.6×10^{-3} , 15.0×10^{-3} and 24.81×10^{-3} S.m² mol⁻¹ respectively. Calculate the $\lambda\infty$ of NH₄OH. (4+2)
- 14. a) Explain the determination of transport number of H⁺ and Cl⁻ ions in hydrochloric acid by moving boundary method.
 - b) Write Debye-Huckel Onsanger equation and indicate the terms involved. (4+2)
- 15. a) Derive Nernst equation for the electrode potential thermodynamically.
 - b) The Standard reduction potentials of Ag⁺|Ag and Cu⁺²|Cu electrodes are 0.8 V and 0.34 V respectively. Represent the cell symbolically and calculate the emf of the cell. (4+2)
- 16. a) Explain the construction of glass electrode and represent it symbolically.
 - b) A hydrogen electrode was immersed in the solution and coupled with a colomel electrode, the emf of the cell was found to be 0.4 V. Calculate pH of the solution, given $E_{Cal}^0 = 0.2415$ volts. (4+2)
 - 17. a) How is the EMF of a cell experimentally determined by Pogendroff's compensation method?
 - b) Differentiate between single electrode and standard electrode potential. (4+2)
- 18. a) Derive Henderson's equation for calculating pH of an acidic buffer.
 - b) Give any two analytical applications of buffer solutions. (4+2)
- 19. a) What is Seebeck effect? Explain why carbon dioxide has a zero dipole moment and sulphur dioxide has a positive dipole moment.
 - b) What are ferro magnetic and diamagnetic substances? (4+2)

(3+3)

		-3-	SN - 339
20.	a)	i) Write Clausius-Mossotti equation and indicate the terms involved inii) What are semiconductors? Give an example.	ı it.
	b)	Chlorine is microwave inactive, where as hydrogen chloride is active. Why?	(4+2)
21.	a)	Name the different types of molecular spectra. Mention the regions of the electromagnetic spectrum in which they appear.	• •
	b)	Calculate the reduced mass of Hcl molecule. Given atomic masses of hydroand chlorine are 0.001 and 0.0355 respectively. $N = 6.023 \times 10^{23}$.	gen (4+2)
22.		Give any four differences between Raman Spectra and IR Spectra. Calculate the number of modes of vibrations for carbondioxide and was molecules.	ter (4+2)
23.	a)	Explain in brief: Stokes and anti Stoke's lines.	
	b)	State Hooke's law.	(4+2)
24.	a)	How is rotational spectral data of a diatomic molecule used to determine moment of inertia and bond length of the molecule?	the
	b)	The force constant for HF molecule is 870 N/m. Calculate the fundame vibrational frequency. Given C = 3×10^8 m.s ⁻¹ and reduced mass of HF; μ = 0.1566 \times 10 ⁻²⁶ kg.	ntal (3+3)

25. a) Mention the different types of currents obtained at the Dropping Mercury Electrode (D.M.E.).

b) Give any two applications of polarography.