

V Semester B.A./B.Sc. Examination, Nov./Dec. 2018 (Semester Scheme) (Fresh + Repeaters) (CBCS) (2016-17 and Onwards) Mathematics MATHEMATICS – V

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART - A

1. Answer any five questions:

(5×2=10)

- a) In a ring (R, +, ·), show that $a \cdot (-b) = (-a) \cdot b = -(a \cdot b) \ \forall a, b, \in \mathbb{R}$.
- b) Define subring of a ring and give an example.
- c) Show that the set of even integers is an ideal of the ring of integers.
- d) Find the unit normal vector to the surface $(x 1)^2 + y^2 + (z + 2)^2 = 9$ at (3, 1, -4).
- e) If $\phi = 2x^3y^2z^4$, then find $\nabla \phi$.
- f) Write the Newton's divided difference interpolation formula.
- g) Evaluate $\Delta^{10} (1 ax)(1 bx^2) (1 cx^3) (1 dx^4)$.
- h) State the Trapezoidal rule for the integral $\int_{a}^{b} f(x)dx$.

PART - B

Answer two full questions.

(2×10=20)

- 2. a) Prove that the intersection of any two subrings is a subring. Give an example to show that the union of two subrings of a ring need not be a subring.
 - b) Prove that $(z_5, +_5, \times_5)$ is a ring w.r.t. $+_5$ and \times_5 .

OB

- 3. a) Prove that every field is an integral domain.
 - b) Show that the set of all real numbers of the form $a + b \sqrt{2}$, where a and b are integers is a ring w.r.to addition and multiplication.

- 4. a) If $f: R \to R'$ be a homomorphism and onto then prove that f is one-one iff, Ker $f = \{0\}$.
 - b) Prove that the set $S = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \middle/ a, b \in z \right\}$ of all 2×2 matrices is a left ideal of the ring R over Z. Also show that S is not a right ideal.

OR

- 5. a) State and prove fundamental theorem of homomorphism of rings.
 - b) Find all the principal ideals of the ring R = $\{0, 1, 2, 3, 4, 5, 6, 7\}$ w.r.to $+_8$ and \times_8 .

Answer two full questions:

 $(2 \times 10 = 20)$

- 6. a) Find the directional derivative of $\phi(x, y, z) = x^2 y^2 + 4z^2$ at the point (1, 1, -8) in the direction of $2\hat{i} + \hat{j} \hat{k}$.
 - b) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 z = 3$ at the point (2, -1, 2).

OR

- 7. a) Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$, where n is a non-zero constant. Also deduce that r^n is harmonic if n=-1.
 - b) If the vector $\vec{F} = (ax + 3y + 4z)\hat{i} + (x 2y + 3z)\hat{j} + (3x + 2y z)\hat{k}$ is solenoidal, then find a.
- 8. a) If ϕ is a scalar point function and \vec{F} is a vector point function. Then prove that $div(\phi\vec{F}) = \phi(div\vec{F}) + \nabla\phi \cdot \vec{F}$.
 - b) Show that $\vec{F}=(6xy+z^3)\hat{i}+(3x^2-z)\hat{j}+(3xz^2-y)\hat{k}$ is irrotational. Find ϕ such that $\vec{F}=\nabla \phi$.

- 9. a) Prove that:
 - i) Curl F is solenoidal.
 - ii) Grad ϕ is irrotational.
 - b) Prove that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$ where $r^2 = x^2 + y^2 + z^2$.

PART - D

Answer two full questions.

 $(2 \times 10 = 20)$

10. a) By the separation of symbols, prove that

$$u_0 + \frac{u_1}{1!} + \frac{u_2 x^2}{2!} + ... = e^x \left[u_0 + \frac{x \Delta u_0}{1!} + \frac{x^2 \Delta^2 u_0}{2!} + ... \right]$$

b) Obtain the function whose first difference is $6x^2 + 10x + 11$.

OR

11. a) From the following data find ' θ ' at x = 84 using difference table.

	•					
X	40	50	60	70	80	90
θ	184	204	226	250	276	304

- b) Express $3x^3 4x^2 + 3x 11$ in factorial notation. Also express its successive differences in factorial notation.
- 12. a) Prepare divided difference table for the following data.

х	1	3	4	6	10
f(x)	0	18	58	190	920

- b) Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$, by using Simpson's $\frac{3}{8}^{th}$ rule.
- 13. a) By using Lagrange interpolation formula find f(10) from the following data.

Х	5	6	9 11	
f(x)	12	13	14	16

b) Evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 sub intervals, by using Simpson's $\frac{1}{3}^{rd}$ rule.

V Semester B.A./B.Sc. Examination, November/December 2018 (CBCS) (2016 – 17 and Onwards) (Semester Scheme) (Fresh + Repeaters) MATHEMATICS – VI

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART – A

1. Answer any five questions.

 $(5 \times 2 = 10)$

- a) Write Euler's equation when f is independent of y.
- b) Find the differential equation of the functional $I = \int_{x_1}^{x_2} \left[y^2 (y')^2 + 2ye^x \right] dx$.
- c) Write the Euler's equation.
- d) Evaluate $\int_{C} (3x+y)dx + (2y-x)dy$ along y = x from (0, 0) to (10,10).
- e) Evaluate $\int_{0}^{\pi/2} \int_{0}^{a\cos\theta} r^{2} dr d\theta$
- f) Evaluate $\iiint_{0.01}^{122} xyz dxdydz$.
- g) Find the area of the circle $x^2 + y^2 = a^2$ by double integration.
- h) State Stoke's theorem.

plotigies of needed october 5 PART - B to the court of

Answer two full questions.

 $(2\times10 = 20)$

- 2. a) Find the extremal of the functional $I = \int_{0}^{\pi/2} \left[y^2 (y')^2 2y \sin x \right] dx$ under the end conditions $y(0) = y(\pi/2) = 0$.
 - b) Define Geodesic. Prove that geodesic on a plane is a straight line.

- 3. a) If a cable hangs freely under gravity from two fixed points then show that the shape of cable is a catenary.
 - b) Solve the variational problem $\delta \int_{0}^{\pi/2} \left[y^2 (y')^2 \right] dx = 0$ under the condition

$$y(0) = 0, y(\frac{\pi}{2}) = 2.$$

- 4. a) Prove that catenary is the curve which when rotated about a line generates a surface of minimum area.
 - b) Find the extremal of the functional $\int_{x_1}^{x_2} \left[12xy + (y')^2 \right] dx$.
- 5. a) Find the extremal of the functional $\int_0^1 \left[x + y + (y')^2 \right] dx = 0$ under the conditions y(0) = 1 and y(1) = 2.
 - b) Find the extremal of the functional $\int_0^1 [(y')^2 + x^2] dx$ subject to the constraint $\int_0^1 y dx = 2$ and having end conditions y(0) = 0 and y(1) = 1.

PART - C

Answer two full questions.

 $(2 \times 10 = 20)$

- 6. a) Evaluate $\int_C (x+y+z)$ ds where C is line joining the points (1, 2, 3) and (4, 5, 6) whose equations are x = 3t + 1, y = 3t + 2; z = 3t + 3.
 - b) Evaluate $\iint_R xy(x+y) dx dy$ over the region R bounded between the parabola $y = x^2$ and the line y = x.

- 7. a) Change the order of integration in $\int_{0}^{a} \int_{0}^{2\sqrt{ax}} x^2 dxdy$ and hence evaluate.
 - b) Evaluate $\iint_A \sqrt{4x^2 y^2} \, dxdy$ where A is the area bounded by the lines y = 0, y = x and x = 1.

- 8. a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dx \, dy \, dz$.
 - b) Change into polar coordinates and evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$.
- 9. a) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integration.
 - b) Evaluate $\iiint xyz \, dx \, dy \, dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$ by changing it to spherical polar coordinates.

PART - D

Answer two full questions.

 $(2 \times 10 = 20)$

- 10. a) State and prove Green's theorem.
 - b) Using divergence theorem, evaluate $\iint_S (x\hat{i} + y\hat{j} + z^2\hat{k})$. nds where S is the closed surface bounded by the cone $x^2 + y^2 = z^2$ and the plane z = 1. OR
- 11. a) By using divergence theorem, evaluate $\iint_S \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 4x \hat{i} 2y^2 \hat{j} + z^2 \hat{k}$ and S is the surface enclosing the region for which $x^2 + y^2 \le 4$ and $0 \le z \le 3$.
 - b) Evaluate $\iint \text{curl } \vec{F} \cdot \hat{n} \text{ ds by Stoke's theorem if } \vec{F} = (y-z+2)\hat{i} + (yz+4)\hat{j} xz\hat{k}$ and S is the surface of the cube $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$.
- 12. a) Using Green's theorem evaluate for the scalar line integral of $\vec{F} = (x^2 y^2)\hat{i} + 2xy\hat{j}$ over the rectangular region bounded by the lines x = 0, y = 0; x = a; y = b.

b) Using the divergence theorem evaluate $\iint_S \vec{F} \cdot \hat{n} ds$ where $\vec{F} = (x^2 - yz) \hat{i} + (y^2 - zx) \hat{j} + (z^2 - xy) \hat{k}$ over the rectangular parallelopiped $0 \le x \le a, \ 0 \le y \le b, \ 0 \le z \le c$

- 13. a) Using Green's theorem evaluate $\int_C (xy + y^2) dx + x^2 dy$ where C is the closed curve bounded by y = x and $y = x^2$.
 - b) Evaluate by Stoke's theorem $\oint_C yz dx + zx dy + xy dz$. where C is the curve $x^2 + y^2 = 1$; $z = y^2$.