

V Semester B.Sc. Examination, Nov./Dec. 2018 (CBCS) (F+R) (2016-17 and Onwards) CHEMISTRY – V Organic Chemistry

Time: 3 Hours Max. Marks: 70

Instructions: 1) The question paper has two parts. Answer both the parts.

2) Draw diagrams and chemical equations wherever necessary.

PART - A

Answer any eight of the following questions. Each question carries

two marks.

(8×2=16)

- 1. Write R and S configuration of 2-amino propanoic acid.
- 2. What are the necessary conditions for a cyclic compounds to exhibit geometrical isomerism?
- 3. How is acetone converted into isopropyl amine?
- 4. Methanamine is more basic than ammonia, give reason.
- 5. How is pyrrole prepared from ammonium mucate?
- 6. Mention one medicinal use of :
 - i) Ephedrine
 - ii) Caffeine.
- 7. State "Isoprene rule".
- 8. Why TMS uses as reference in NMR spectroscope?
- 9. Mention the electronic transition that takes place when UV radiation is passed through acetone.

- 10. What are auxochromes? Give an example.
- 11. What are direct dyes? Give an example.
- 12. What are tranquilizers? Give an example.

PART - B

Answer **any nine** of the following questions. **Each** question carries **six** marks.

 $(9 \times 6 = 54)$

- 13. a) Explain optical isomerism in lactic acid.
 - b) Give the structure of 2, 3 dichloro butane showing the plane of symmetry.

(4+2)

- 14. a) Explain chemical method of resolution of racemic mixture.
 - b) Mention the any two differences between enantiomers and diastereomers.

(4+2)

- 15. a) How to distinguish between maleic acid and fumaric acid by cyclisation method?
 - b) How do you distinguish cis and trans isomers by dipole moment? (4+2)
- 16. a) What is Hinsberg reagent? How is it used to distinguish between primary, secondary and tertiary amines?
 - b) Explain Sandmeyer's reaction with an example.

(4+2)

- 17. a) Explain the aromaticity of thiophene.
 - b) How is Benzene diazonium chloride is converted into phenyl hydrazine?

 Give the reaction.

 (4+2)

18. a) Discuss the general mechanism of electrophilic substitution of pyrrole.

b) What happens when quinoline is nitrated? Give equation. (4+2)

19.	a)	Write general characteristics of alkaloids.	
	b)	How would you prove that α -terpineol contains one double bond ?	(4+2)
20.	a)	How is glucose converted to fructose?	
		Write the Haworth structure of lactose.	(4+2)
21.	a)	Describe the synthesis of nicotine from succinamide.	
		Write the structure of zingiberene.	(4+2)
22.	a)	How do you prove the presence of six membered ring in glucose by periodic acid oxidation method?	
	b)	Write the structure of dichlofenac and mention its use.	(4+2)
23.	a)	Explain the effect of conjugation on the UV spectra of organic compound with an example.	ls
	b)	How is IR spectrum used to distinguish between free –OH and hydrogen bonded –OH groups?	(4+2)
24.	a)	Explain the graphical representation (interpretation) of IR spectra of benzoic acid.	
	b)	Mention the number of signals and multiplicity of the signals in the NMR spectrum of 1, 1, 2 trichloroethane.	(4+2)
25.	a)	Give the synthesis of ibuprofen.	
		Give any two principles of green chemistry.	(4+2)

V Semester B.Sc. Examination, November/December 2018 (CBCS) (F + R) (2016-17 and Onwards) CHEMISTRY Physical Chemistry (Paper – VI)

Time: 3 Hours

Max. Marks: 70

Instructions: 1) The question paper has two Parts. Answer both the Parts.

2) Draw diagrams and write chemical equation wherever necessary.

PART - A

Answer any eight of the following questions. Each question carries two marks. (8×2=16)

- 1. Give any two limitations of standard hydrogen electrode.
- 2. What is liquid junction potential? How it is eliminated?
- 3. What is salt bridge? What is its function in galvanic cell?
- Calculate the electrode potential (half cell potential) at 298 K for a reaction Cu²⁺ + 2e⁻ → Cu. Given [Cu²⁺] = 5 moles, E⁰_{Cu} = 0.34V.
- 5. Why is the transport number of cadmium ion in cadmium iodide abnormal at high concentration?
- 6. What is the effect of temperature on degree of hydrolysis?
- 7. Explain induced dipole moment with an example.
- 8. Define force constant, mention its significance.
- 9. State Franck-Condon principle
- 10. What is halfwave potential? Give its significance.
- 11. State Born-Oppenheimer approximation.
- 12. N₂ molecule fails to exhibit rotational spectra, but CO exhibits why?

PART - B

Answer any nine of the following questions. Each question carries six marks. (9×6=54)

- 13. a) How is molar conductance of 0.1 M NaNO₃ determined experimentally?
 - b) The molar conductance of CH_3COONa , HCl and NaCl at infinite dilution are 9.20×10^{-3} , 4.272×10^{-2} and 12.85×10^{-3} Sm²/mol respectively. Calculate the molar conductance of acetic acid at infinite dilution. (4+2)
- 14. a) Explain Asymmetric effect and electrophoretic effect of strong electrolytes based on Debye-Huckel theory.
 - b) Write any two advantages of conductometric titration.

(4+2)

- 15. a) With Neat labeled diagram, explain working of calomel electrode.
 - b) The limiting ionic conductance of Na⁺ ion is 4.929×10^{-3} Sm²/mol. Calculate the Ionic mobility of Na⁺ion. (4+2)
- 16. a) How pH of a solution is determined using glass electrode?
 - b) Calculate the specific conductance of the solution of an electrolyte having the resistance of 220 ohm at 298 K. Given cell constant = 80 m⁻¹. (4+2)
- 17. a) Derive Nernst equation for single electrode potential. (Free energy concept).
 - b) Write any two limitations of quinhydrone electrode.

(4+2)

- 18. a) Explain the acid-base theory of indicators by taking phenolphthalein as an example.
 - b) Write two biological applications of buffer solutions.

(4+2)

- 19. a) What is Seebeck effect? Explain why CO₂ has zero dipole moment and SO₂ has positive dipole moment.
 - b) Explain the term Piezoelectricity.

(4+2)

- 20. a) What are paramagnetic and diamagnetic substances? Give two examples for each type.
 - b) Pure rotational spectrum of CO has lines spaced at 384.2 m^{-1} . Calculate its moment of inertia. (Given h = $6.627 \times 10^{-34} \text{ Js}$, c = $3 \times 10^8 \text{ m/s}$) (4+2)

- 21. a) Derive the relationship between moment of inertia and inter nuclear distance
 - b) Write selection rules for pure rotational and vibrational transitions of a (4+2)
- 22. a) State Hook's law. Derive an expression for frequency of simple harmonic
 - b) Force constant of HF molecule is 860 Nm⁻¹. Calculate the fundamental vibrational frequency and zero point energy. [h = 6.627×10^{-34} Js, $\mu = 0.1566 \times 10^{-26} \text{ Kg}$]. (4+2)
- 23. a) Give any four general characteristics of Raman lines.
 - b) Mention any two advantages of Raman spectra over IR spectra. (4+2)
- 24. a) Mention the different types of currents obtained at the Dropping Mercury Electrode (DME).
 - b) Calculate the total number of modes of vibrations for CO2 and H2O molecule. (4+2)
- 25. a) Write Ilkovic equation. Mention its applications.
 - b) What is cyclic voltamogram? (4+2)