

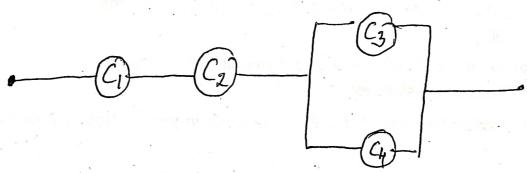
# Sixth Semester B.Sc. Examination, May 2017 (CBCS) (Freshers) (2016 - 17 & Onwards) STATISTICS - VII Applied Statistics - 2

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer five questions from Section – A and five questions from Section – B.

2) Scientific calculators are permitted.


SECTION - A

(25 Marks)

I. Answer any five questions from the following:

 $(5 \times 5 = 25)$ 

- 1) Define reliability function and hazard function. If the linear hazard model is of the form h(t) = a.t, t > 0 and a is a constant, find reliability function R(t) and density function of failure time f(t).
- 2) a) Define Mean Time to Failure (M.T.T.F.) and obtain M.T.T.F. for exponential distribution with failure time density  $f(t) = \lambda e^{-\lambda t}$ , t > 0.
  - b) Write the structure, function and find the reliability of the system:



- 3) Explain the meaning of "scaling" as used in mental tests and discuss any two scaling procedures used in mental tests.
- 4) Distinguish between:
  - i) Therapeutic and prophylactic trials.
  - ii) False negative rate and false positive rate.
  - iii) Observational and cross sectional studies.



- 5) Explain the construction and use of Receiver Operating Characteristic (R.O.C.) curve.
- 6) Discuss the following:
  - i) Elasticity
  - ii) Total and marginal utility
  - iii) Giffen's paradox.
- 7) State and prove law of equi-marginal utility for two commodities.
- 8) a) Mention the activities of Central Statistical Organization (C.S.O.).
  - b) What is national income? Mention the methods of estimating national income.

### SECTION - B

(45 Marks)

II. Answer any five questions from the following:

 $(5 \times 9 = 45)$ 

- a) Define "system reliability" and obtain the reliability of a system of η independent components connected in parallel.
  - b) Define I.F.R. and D.F.R. distribution and examine this for the distribution whose failure rate function is  $h(t) = \alpha \beta t^{\beta-1}$ , t > 0 for the cases (i)  $\beta \ge 1$  (ii)  $\beta < 1$ .
- 10) a) What are Percentile Scores? Explain their computation for the given frequency distribution.
  - b) Explain the method of scaling of rankings in terms of Normal Probability Curve. (5+4)
- 11) a) Distinguish between prospective study and retrospective study. Give an example for each.
  - b) Define and interpret the following:
    - i) Relative Risk (R.R.)
    - ii) Odds Ratio (O.R.)
    - iii) Body Mass Index (B.M.I.).

(3+6)



# 12) a) Discuss:

- i) Law of demand
- ii) Engel's law.

Also sketch the law of demand and Engel's curve.

- b) Define price elasticity of demand. Find the demand function if the price elasticity is constant. (6+3)
- 13) a) State the law of diminishing marginal utility. Give an illustration.
  - b) If  $U = 2q^3 + 13$  is the utility function then find the marginal utility when q = 5.
  - c) Find equilibrium price and quantity exchanged if the demand and supply curves are  $D = 250 3p^2$  and  $S = p^2 + 2p^4$ . (3+2+4)
- 14) a) Discuss the organization of N.S.S.O. and its publications.
  - b) Distinguish between national income and per capita income and mention the causes for slow growth rate of national income. (5+4)
- 15) a) Explain:
  - i) G.D.P. and G.N.P.
  - ii) National income at market prices and at factor prices.
  - iii) National Accounts Statistics (NAS) of C.S.O.
  - b) What is the per capita income of a country with population of 75 crores and national income of 10,25,000 crores? (7+2)



## Sixth Semester B.Sc. Examination, May 2017 (CBCS) (Freshers) (2016-17 and Onwards) STATISTICS - VIII **Operations Research**

Time: 3 Hours

Max. Marks: 70

Instructions: i) Answer five questions from Section - A and five questions from Section – B.

ii) Scientific calculators are allowed.

SECTION - A

(25 Marks)

Answer any five questions from the following:

 $(5 \times 5 = 25)$ 

- 1) What is operations research? Mention its applications.
- 2) Explain the graphical method of solving a Linear Programming Problem (LPP). Indicate the existence of
  - i) Multiple solution
  - ii) Unbounded solution
  - iii) No solution graphically.
- 3) For any  $(2 \times 2)$  two-persons zero-sum game without saddle point, obtain the expressions for optimum strategies and value of the game.
- 4) a) What is inventory? In inventory theory, what are controllable and uncontrollable variables? Give examples.
  - b) State the needs for replacement of items. Explain.
- 5) a) Describe a typical queuing system with a diagram.
  - b) Discuss:
    - ii) Customer behaviour. i) Queue discipline
- 6) State J.D.C. Little's formula and obtain the expressions for the average waiting time of a customer in the
  - i) System and
- ii) Queue under (M/M/1): (FIFO/ $\infty$ / $\infty$ ) model.
- 7) a) In network analysis, what is meant by an event? Explain different types of events.
  - b) What is meant by independent float of an activity? Give an expression to compute it.
- 8) State the difference between PERT and CPM techniques.

### SECTION - B

(45 Marks)

II. Answer any five questions from the following:

 $(5 \times 9 = 45)$ 

9) a) Define a basic solution. Obtain all such solutions in the system of equations.

$$x_1 + 2x_2 + x_3 = 4$$

- $2x_1 + x_2 + 5x_3 = 5$
- b) State and prove the necessary and sufficient condition for the existance of a feasible solution to a Transportation Problem (T.P.) (5+4)
- 10) a) Explain simplex method of solving a L.P.P.
  - b) Explain North-West corner rule to determine initial basic feasible solution of a T.P. (5+4)
- 11) a) Distinguish between transportation problem and assignment problem. Show that assignment problem is a particular case of a transportation problem.
  - b) Explain Hungarian algorithm of solving a assignment problem. (4+5)
- 12) a) Define the terms:
  - i) pay off
  - ii) zero sum game
  - iii) two person-zero-sum game
  - iv) strategy.
  - b) Explain the graphical method of solving a  $(2 \times n)$  game.

(4+5)

- 13) a) Explain the following w.r.t. an inventory problem.
  - i) Setup cost
- ii) Carrying cost
- iii) Shortage cost
- iv) Lead time
- v) Buffer stock.
- b) Obtain an optimum replacement policy for replacing items which deteriorate with time assuming time is continuous.
- 14) a) Distinguish between individual and group replacement and write a note on (5+4)
  - b) Stating the assumptions involved, derive an expression for optimum quantity to be ordered under EOQ model when shortages are not permitted. (4+5)
- 15) a) Explain forward and backward pass calculations in CPM.
  - b) Describe time estimates in PERT.

(6+3)