

VI Semester B.A./B.Sc. Examination, May 2017 (Semester Scheme) (Fresh) (CBCS) (2016-17 and Onwards) MATHEMATICS – VII

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all Parts.

PART-A

1. Answerany five questions:

(5×2=10)

- a) Define a vector space over a field.
- b) For what value of K the vectors (1, 2, 3), (4, 5, 6) and (7, 8, K) are linearly dependent.
- c) Find the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (3x y, 2x + 4y, 5x 6y) w.r.t. the standard basis.
- d) Find the null space of the linear transformation $T: V_3(R) \to V_2(R)$ defined by T(x, y, z) = (y x, y z).
- e) Write scalar factors in cylindrical co-ordinate system.
- f) Solve: $\frac{dx}{yz} = \frac{dy}{zx} = \frac{dz}{xy}$.
- g) Form a partial differential equation by eliminating the arbitrary constants from z = (x + a) (y + b).
- h) Solve: pq + p + q = 0.

PART-B

Answertwo full questions:

 $(2 \times 10 = 20)$

- 2. a) A subset W of a vector space V(F) is a subspace of V(F) if and only if $C_1 \alpha + C_2 \beta \in W$, for $\alpha, \beta \in W$.
 - b) Find the basis and dimension of the subspace spanned by (1, -1, 0), (0, 3, 1), (1, 2, 1) and (2, 4, 2) in V_3 (R).

OR

- 3. a) A set of non-zero vectors $(\alpha_1, \alpha_2, \alpha_n)$ of vector space V(F) is linearly dependent if and only if one of vectors Say α_K ($2 \le K \le n$) is expressed as a linear combination of its preceding ones.
 - b) Prove that $W = \{(x, y, z) \mid x = y = z\}$ is a subspace of R^3 .
- 4. a) If $T: U \rightarrow V$ is a linear transformation then prove that
 - i) T(0) = 0' where 0 and 0' are the zero vectors of U and V respectively.
 - ii) $T(-\alpha) = -T(\alpha)$, $\forall \alpha \in U$.
 - b) Find the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1, 0) = (1, 1) and T(0, 1) = (-1, 2).

· OR

- 5. a) State and prove rank nullity theorem.
 - b) Show that the linear transformation $T: R^3 \to R^3$ given by $T(e_1) = e_1 + e_2$, $T(e_2) = e_1 e_2 + e_3$ and $T(e_3) = 3e_1 + 4e_3$ is non singular where $\{e_1, e_2, e_3\}$ is the standard basis of R^3 .

PART-C

Answer two full questions:

(2×10=20)

- 6. a) Verify the condition of integrability and solve : 2yzdx + zxdy xy(1 + z) dz = 0.
 - b) Solve: (y z) p + (z x) q = x y.

OR

- 7. a) Show that cylindrical coordinate system is orthogonal co-ordinate system.
 - b) Express the vector $\vec{f} = 3y\hat{i} + x^2\hat{j} z^2\hat{k}$ in cylindrical co-ordinate and find f_p , f_ϕ , f_z .
- 8. a) Solve: $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$
 - b) Solve: $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$.
 - 9. a) Express the vector $\vec{f} = 3y\hat{i} + 2z\hat{j} + x\hat{k}$ in cylindrical co-ordinates and find f_p , f_ϕ , f_z .
 - b) Express the vector $\overrightarrow{f} = z\hat{i} 2x\hat{j} + y\hat{k}$ in terms of spherical polar co-ordinates and find f_r , f_θ , f_ϕ .

PART-D

Answer two full questions:

 $(2\times10=20)$

10. a) Form partial differential equation by eliminating arbitrary function $f(xy + z^2, x + y + z) = 0$.

OR

b) Solve: $p^2 - q^2 = x - y$.

11. a) Solve
$$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 12xy$$
.

- b) Solve: $z^2(p^2 + q^2) = x^2 + y^2$, by using the transformation $u = \frac{z^2}{2}$.
- 12. a) Find the complete integral of z = pq by using Charpit's method.

b) Solve:
$$\frac{\partial^2 z}{\partial x^2} - 7 \frac{\partial^2 z}{\partial x \partial y} + 12 \frac{\partial^2 z}{\partial y^2} = e^{x-y} + x^2$$
.

- 13. a) A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by $y = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement y(x, t).
 - b) Solve: $\frac{\partial u}{\partial t} = 16 \frac{\partial^2 u}{\partial x^2}$ subjected to the condition:
 - i) u(0, t) = 0, u(1, t) = 0 for all t
 - ii) $u(x;0) = x^2 x$, $0 \le x \le 1$.

VI Semester B.A./B.Sc. Examination, May 2017 (Fresh) (CBCS) (2016-17 and Onwards) (Semester Scheme) MATHEMATICS – VIII

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions/Parts.

PART-A

Answer any five questions.

 $(5 \times 2 = 10)$

- 1. a) Evaluate $\lim_{z \to e^{\frac{i\pi}{4}}} \left(\frac{z^2}{z^4 + z^2 + 1} \right)$.
 - b) Show that |z (2 + 3i)| = 5 represents a circle.
 - c) Prove that $u = y^3 3x^2y$ is a harmonic function.
 - d) Define cross ratio of four points.
 - e) Show that $f(z) = \sin z$ is analytic.
 - f) State Liouville's theorem.
 - g) Find the real root of the equation $x^3 x 2 = 0$ over the interval (1.5, 2) upto two approximation by bisection method.
 - h) Write Newton Raphson iterative formula.

PART-B

Answer four full questions:

 $(4 \times 10 = 40)$

- 2. a) Show that the locus of $arg\left(\frac{\overline{z}}{z}\right) = \frac{\pi}{2}$ is a line through the origin.
 - b) Show that necessary condition for a function f(z) = u(x, y) + i v(x, y) to be analytic.

OF

- 3. a) Evaluate $\lim_{z \to 2e^{\frac{i\pi}{6}}} \left(\frac{z^2 4}{z^3 + z + 5} \right)$.
 - b) Show that $f(z) = \cos z$ is analytic and hence show that $f'(z) = -\sin z$.

P.T.O.

- 4. a) Find the analytic function f(z) = u + iv given that $u v = e^x$ (cosy siny).
 - b) Find the orthogonal trajectories of the families of curves $e^{-x} \cos y + xy = c$.

OR

- 5. a) If f(z) = u + iv is analytic function then show that $\left(\frac{\partial f(z)}{\partial x}\right)^2 + \left(\frac{\partial f(z)}{\partial y}\right)^2 = \left|f'(z)\right|^2$.
 - b) Show that $u = e^x \sin y + x^2 y^2$ is harmonic and find its harmonic conjugate.
- 6. a) Evaluate $\int_{(0,1)}^{(2,5)} (3x + y)dx + (2y x)dy$ along the curve $y = x^2 + 1$.
 - b) State and prove Cauchy's inequality theorem.

OR

- 7. a) Evaluate $\int_{C} \frac{z+4}{z^2+2z+5} dz$ where C is |z+1-i|=2.
 - b) If f(z) is analytic inside and on a simple closed curve C and a is a point within C then prove that $f^n(a) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z-a)^{n+1}} dz$.
- 8. a) Show that $w = \frac{1}{z}$ transform a circle to circle or to a straight line.
 - b) Discuss the transformation w= Sin z.

OR

- 9. a) Find the bilinear transformation which maps $z=\infty$, i, 0 onto w=0, i, ∞ respectively.
 - b) Show that the transformation $w = \frac{i-z}{1+z}$ makes the x-axis of the Z-plane onto a circle |w| = 1 and the points in the half plane y > 0 on the points |w| < 1.

PART-C

Answer two full questions.

 $(2 \times 10 = 20)$

- 10. a) Using bisection method find a real root of $x^3 3x^2 + 1 = 0$ correct to three places of decimal.
 - b) Use Newton-Raphson method to find a real root of the equation $x^3 2x 5 = 0$ correct to three decimal places.

OR

- 11. a) Solve the equation x + y + 54z = 110, 27x + 6y z = 85, 6x + 15y + 2z = 7 using Jacobi's iteration method to third approximation.
 - b) Find the largest eigen value of the matrix $\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ by power method.
- 12. a) Using Taylor's series method find y at x = 0.2 correct to four decimal points given $\frac{dy}{dx} = x y^2$ and y(0) = 1.
 - b) Solve using Runge-Kutta method $\frac{dy}{dx} = x + y$ and y(0) = 1 for x = 0(0.2)0.4.

OR

- 13. a) Solve $\frac{dy}{dx} = x y$ by Euler's modified method with y(0) = 1 for x = 0.2 correct to 4 places of decimals.
 - b) Using Euler's method solve $\frac{dy}{dx} = x y$ for x = 0(0.1)0.5 given y = 1 when x = 0. Verify with the exact solution.